MASTER - A New Instrument for Hyperspectral Analysis from the Visible to Thermal Infrared

Simon Hook
Simon.J.Hook@jpl.nasa.gov
http://masterweb.jpl.nasa.gov

Background

- The gradual decommissioning and retirement of the TIMS instrument left a gap in the solid earth and natural hazards TIR airborne remote sensing capabilities.
- The ASTER science team needed an airborne instrument for algorithm development and validation.
- MASTER was developed as a follow-up to the MAS instrument design with enhanced electronic subsystems, a variable scan-speed motor and hard drive data recorders.

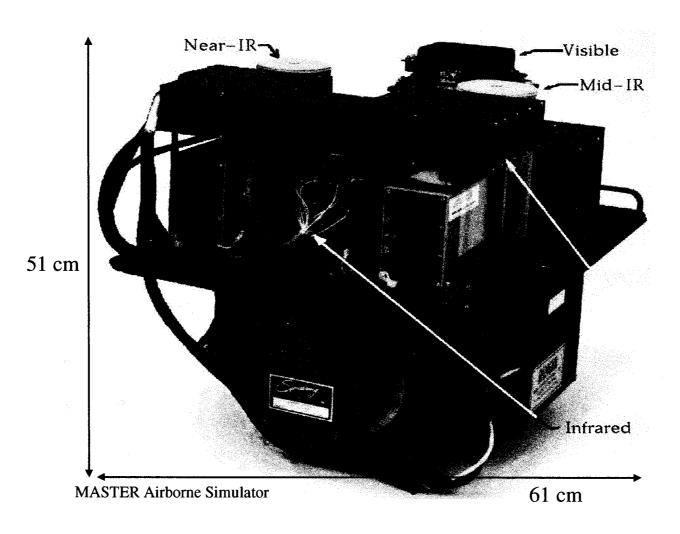
Primary Mission

Collect ASTER-like and MODIS-like land datasets to support the validation of the ASTER and MODIS geophysical retrieval algorithms.

- Collect these datasets at a higher resolution than the spaceborne datasets to permit scaling studies and comparisons with in-situ measurements.
- Underfly the EOS-AM1 ASTER and MODIS sensors to provide an additional radiometric calibration to assist with in-flight instrument performance characterization.

Secondary Mission

- Provide both a backup instrument and interchangeable modules for the current MODIS Airborne Simulator, which is committed to a program of atmospheric, oceanic and land measurements.
- Provide a wider spectral and dynamic range alternative to the use of the Thematic Mapper Simulator (TMS) and the Thermal Infrared Multispectral Scanner (TIMS) airborne scanners.


Status and Future Modifications

- •Instrument declared operational on B200 in December 1998.
- •Addition of linear variable filter to reduce noise in midinfrared channels.
- Addition of attitude sensor to allow geo-correction of MASTER data.
- Integration and validation of MASTER on the DC-8.
- Integration and validation of MASTER on the ER-2.

Instrument Characteristics

Wavelength range	0.4-13 micrometers
Number of channels	50
Number of pixels	716
Instantaneous Field of View	2.5 milliradians
Total Field of View	85.92 degrees
Platforms	Department of Energy KingAir Beachcraft B200
	NASA ER-2
	NASA DC8
Pixel size DC-8	10-30 m
Pixel size ER-2	50 m
Pixel size B200	5-20 m
ER-2 Range (without refueling)	3700 statute miles
B200 Range (without refueling)	700 statute miles
DC-8 Range (without refueling)	5400 nautical miles
Scan speeds	6.25/12.5/25 rps
Products	Radiance at sensor (Level 1B)
Calibration VIS-SWIR	Laboratory Integrating Sphere
Calibration MIR-TIR	2 On-board Blackbodies
Data Format	Hierarchical Data Format (HDF)
Digitization	16-bit

MASTER Instrument

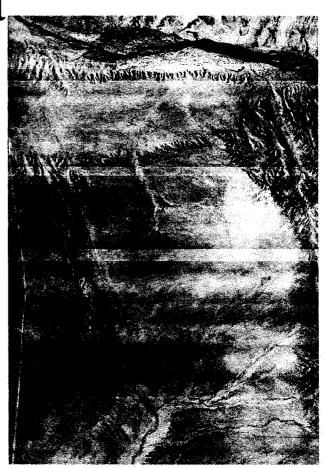
MASTER Calibration

- MASTER Spectral Response Functions (SRFs)
 - All 50 channels measured before and after every deployment with monochometer and/or FTIR
- NIST traceable radiometric source
 - Pre and post deployment laboratory calibrations of bands 1-25 over 30 inch sphere at multiple light levels.
- Extended Area Blackbody (EABB)
- Blackbody characterization
- Environmental Cold Chamber
- Field hemisphere
- Ground validation

Data Processing Status

- *MASTER* Level-0 (raw)data are recorded on removable hard disks. Back-up copies of the flight data are made to DLT tape. Raw data is NOT distributed.
- Analyst performs detailed evaluation of instrument performance and reports on flight success and readiness for next mission.
- A level-0 quicklook product can be generated and hard-copy produced if all data analysis requirements are met.
- Level-0 data is shipped to the Airborne Sensor Facility at NASA Ames Research Center for level-1b processing and generation of HDF output data.
- Level-1b data is distributed to US principal investigator or foreign point of contact. Archive copy of MASTER data is also sent to the EDC (land processes) DAAC

Level-1B Data Processing


The level-1b data product contains radiometrically calibrated and geo-located image data for all bands. Straight and level flight tracks over target sites are archived.

- 4 Primary inputs into level-1b processing
 - 1. Raw data
 - 2. Calibration (spectral and radiometric)
 - 3. Navigation Data
 - 4. Flight descriptors

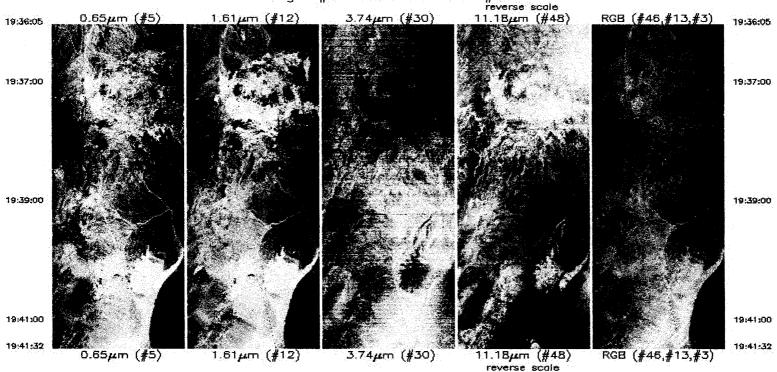
MASTER Level-1b Inputs,

Raw data

- Recorded as 16-bit, unsigned integer in raw SCSI onto removable hard disks.
- 52 bands of data, with housekeeping and engineering data.
- Dynamic brightness offsets during acquisition tracks DC drift of detector output.

MASTER Level-0 dat: Band 48 (11.3 um)

MASTER Level-1b inputs, Calibration information


- Radiometric calibration slopes for VIS/SWIR
 - based upon lab measurements over sphere
- Spectral Response Functions
 - center, peak, half power points and FWHM determined
 - solar irradiance function calculated
- Blackbody paint characterization
 - emissivity calculated
- Instrument operating temperature

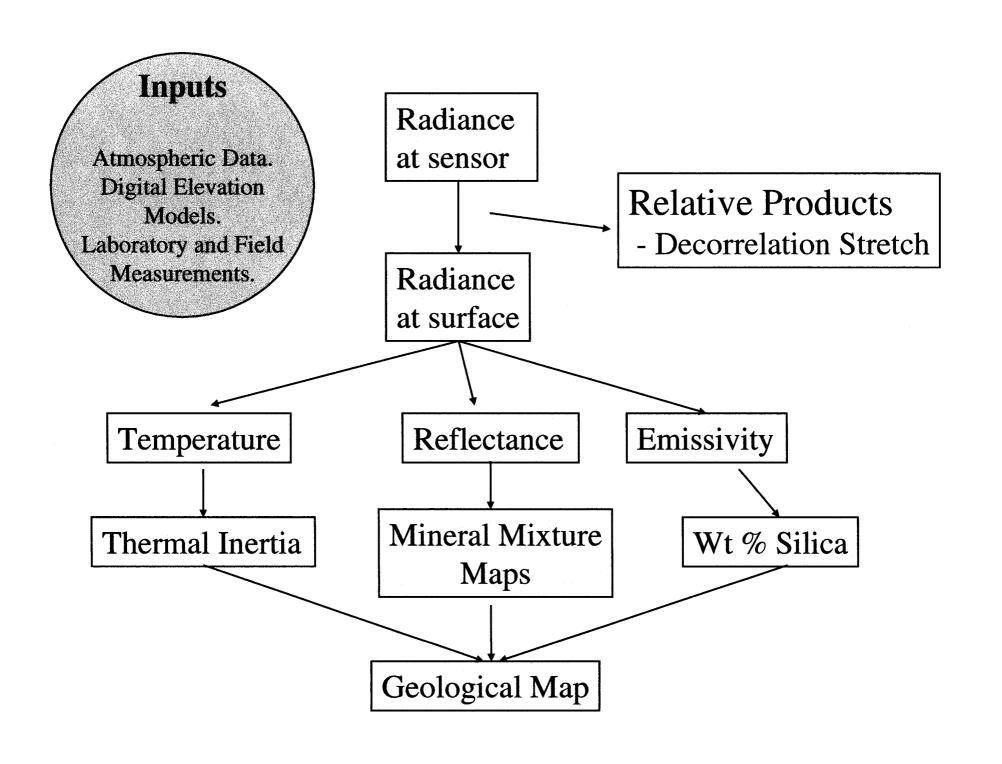
MASTER Level-1b Inputs, Navigation Data

- Navigation data collected from multiple sources.
- Navigation data is filtered and re-sampled for every scan line of MASTER data.
- Latitude and Longitude is given for every pixel.
- Aircraft position, heading, pitch and altitude are stored as unique scientific data sets in the level-1b HDF file.

HDF Quicklook Browse Image

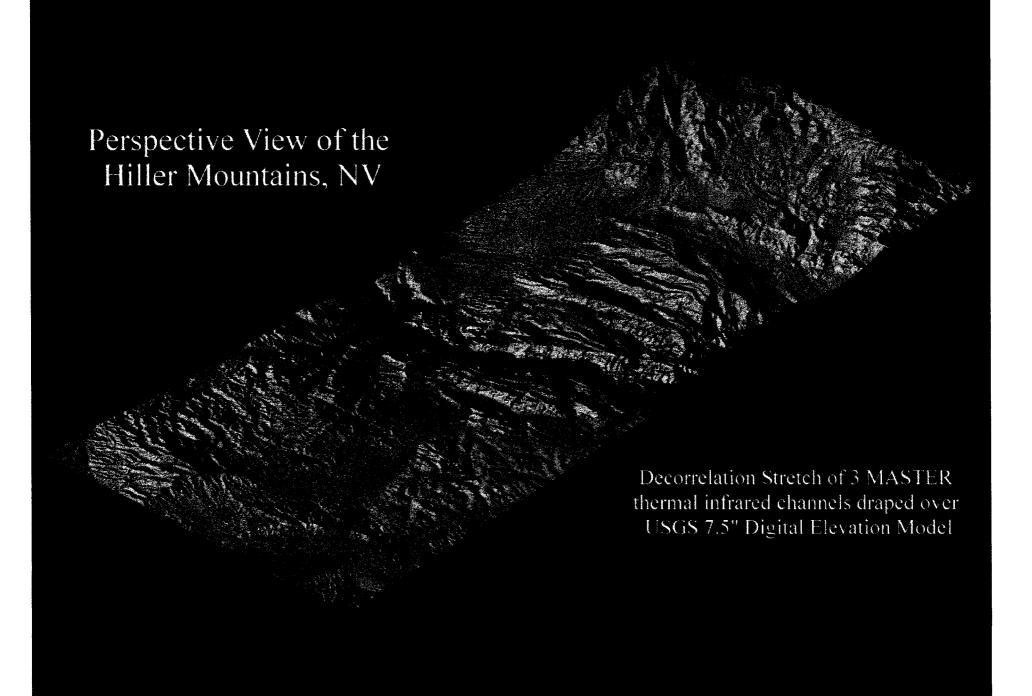
ASTER/MODIS Airborne Simulatar Brawse Imagery SW Sites, Jun99 Campaign — 9 June 1999 Cuprite, NV Flight #99—005—11 Track #6

Aircraft Heading = 190.9° Solar Zenith = 15.1° GPS Altitude = 9648. m (MSL)

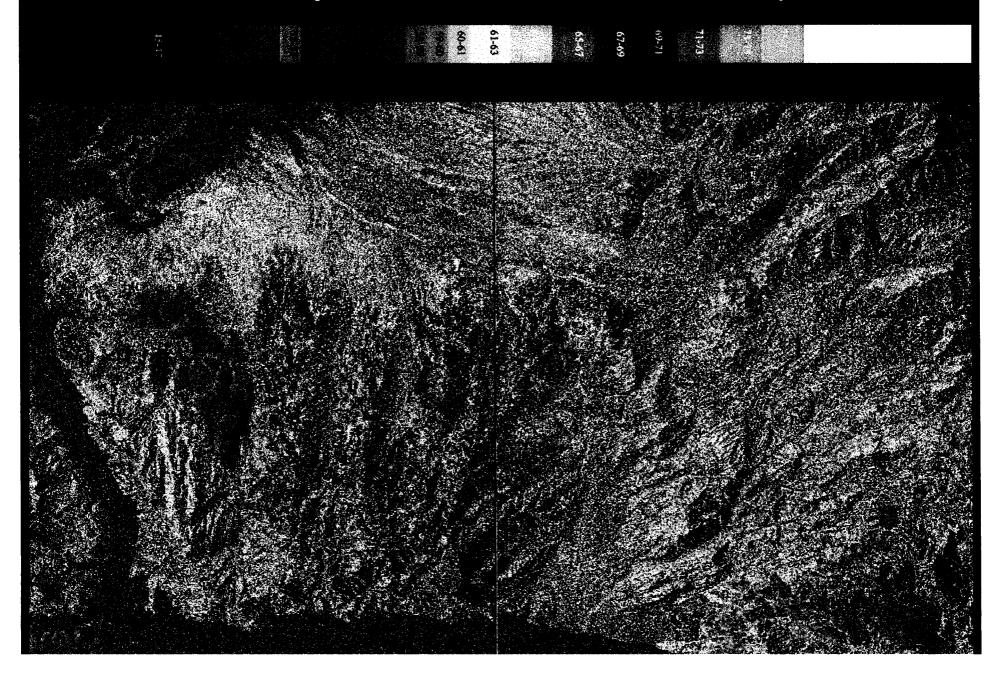

MASTER Data HDF Format

The Hierarchical Data Format (HDF) has been selected by the EOSDIS Project as the format of choice for standard product distribution. HDF consists of a directory structure and a collection of data objects or Scientific Data Sets (SDS).


- MASTER HDF image data is stored as integer but unpacked to real (floating point) data in radiance units.
- MASTER HDF currently consists of 37 Global attributes and 44 scientific data sets
 - -15 SDS's for calibration information
 - 12 SDS's for navigation information
 - -27 SDS's for engineering information
- Software is available to directly import MASTER HDF.
- Unpacking code available to strip image data out of HDF format.


Resources for MASTER and HDF Information

- MASTER web page
 - http://masterweb.jpl.nasa.gov/
- MAS web page
 - http://ltpwww.gsfc.nasa.gov/MODIS/MAS/
- Airborne Sensor Facility web page
 - http://asapdata.arc.nasa.gov
- HDF information
 - http//eosweb.larc.nasa.gov/HBDOCS/hdf.html
 - http//daac.gsfc.nasa.gov/REFERENCE_DOCS/HDF/gdaac_hdf.ht
 ml

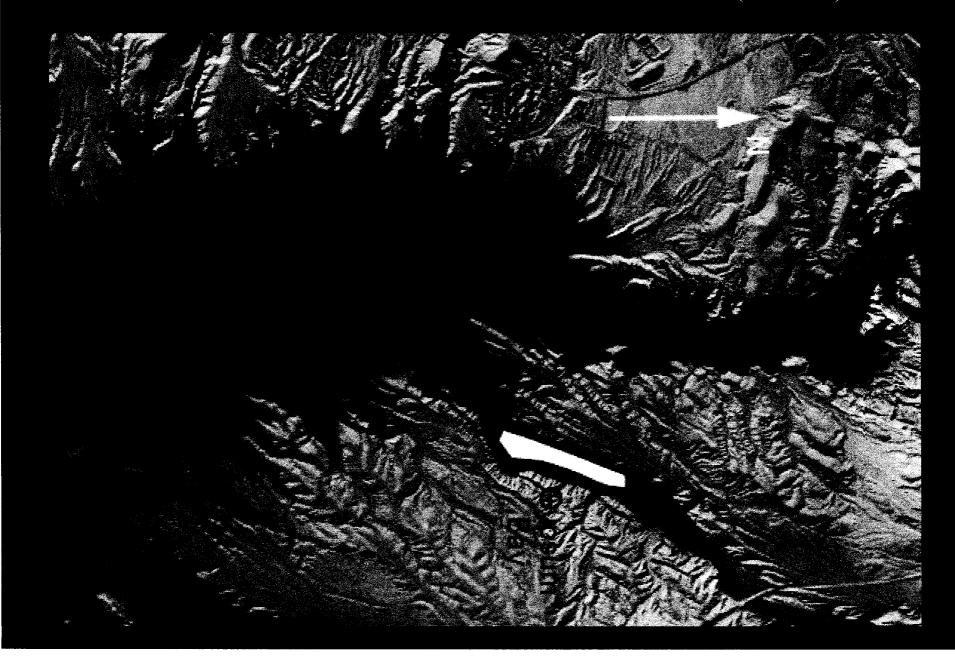


Decorrelation Stretch of MASTER TIR Channels 7 (10.6 um) 4 (9.1 um) and 2 (8.2 um) displayed in RGB. Virgin Mountains, CA

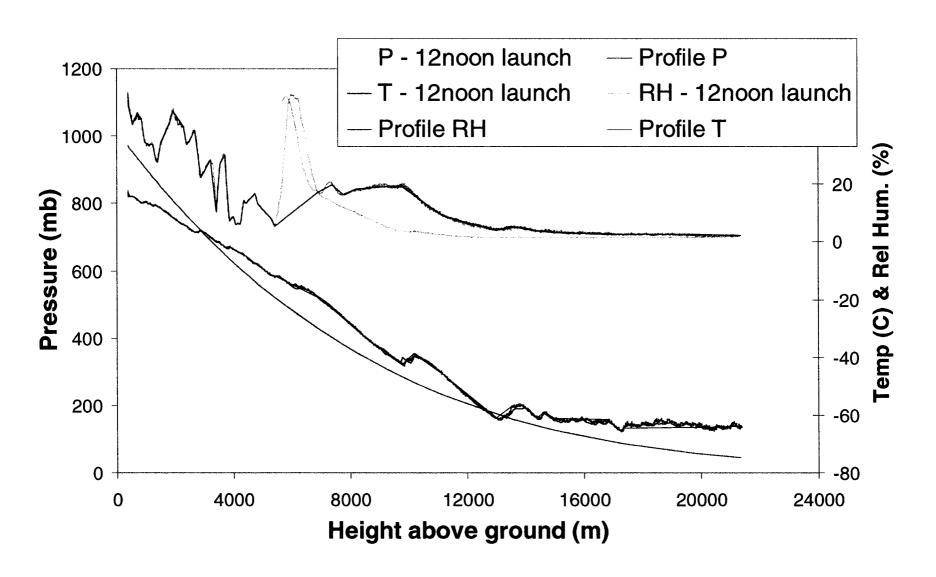
Wt % Silica Map Derived from MASTER Emissivity Data

MASTER B200 Validation Experiment

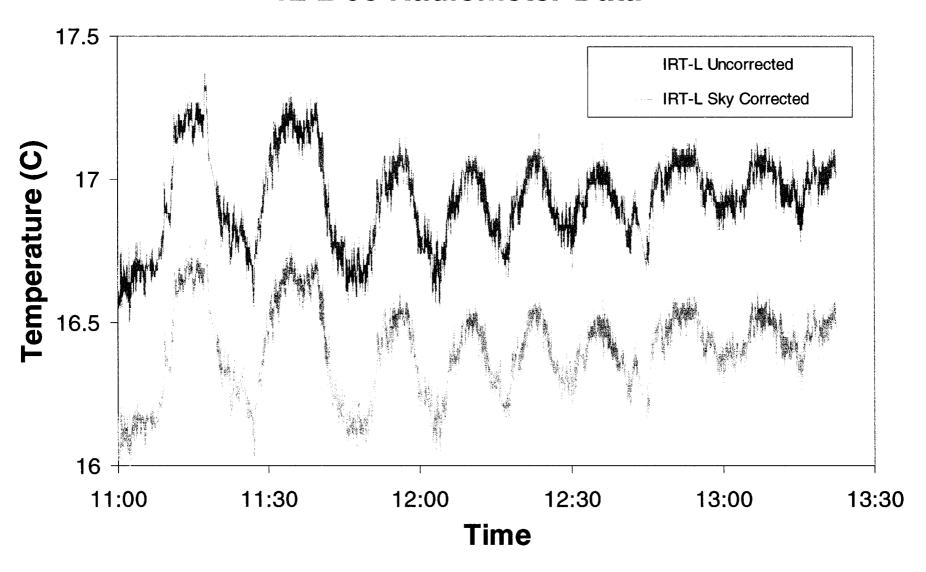
Approach

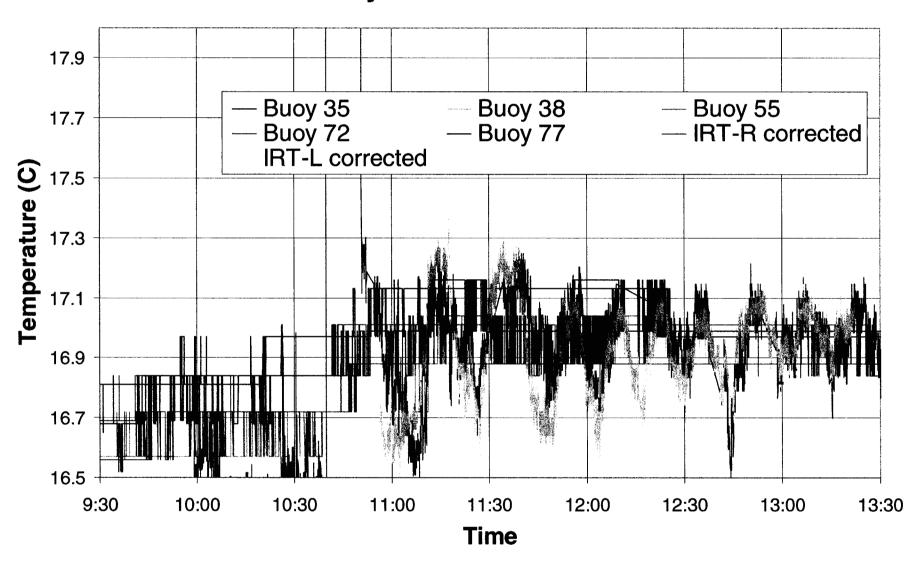

- MASTER data acquired from Ivanpah Playa, CA and Lake Mead NV on December 12th 1998.
- Field teams deployed from the University of Arizona and the Jet Propulsion Laboratory to measure surface and atmospheric properties.
- Field radiance propagated through atmosphere to allow comparison of predicted radiance with measured radiance.

MASTER Validation - continued.


Instrumentation

- Atmospheric sounders.
- Reagan sun photometers.
- Field spectrometers.
- Self calibrating radiometers.
- Bulk temperature loggers.
- Differential GPS receivers.


MASTER Radiance at Sensor - Channel 44 (9.1 um)


12-2-98 Airsonde Data & Derived Profile

12-2-98 Radiometer Data

12-2-98 Buoy and Radiometers Data

Visible - Shortwave Infrared Validation Results

	Center	Radiances (W/m2 um sr)									
	Wave-	Low Altitude				Medium Altitud			High Altitude		
	iength	Predict		%	Predict	MASTER	%	Predict	MASTER	%	
				Difference			Difference			Difference	
1	0.457	58.288				57.100		60.256	}		
2	0.498	66.493						64.984			
3		79.552	81.300		75.832	75.500		74.765	 		
4	0.581	90.558	91.500	-1.040	85.136	83.800	1.569	83.082	79.700	4.071	
5	0.660	90.166	92.000	-2.034	84.044	84.100	-0.067	81.487	79.200	2.807	
6	0.711	82.338	83.800	-1.775	75.329	76.300	-1.290	72.522	71.500	1.409	
7	0.750	76.452	79.000	-3.333	69.786	71.900	-3.030	67.017	67.200	-0.273	
8	0.800	73.746	77.600	-5.225	68.028	70.700	-3.929	65.678	66.000	-0.490	
9	0.866	64.052	70.300	-9.755	59.695	64.500	-8.049	57.838	60.100	-3.911	
10	0.906	48.586	53.000	-9.084	43.273	48.000	-10.923	41.310	44.400	-7.481	
11	0.945	28.558	34.030	-19.159	23.492	30.270	-28.853	21.885	27.470	-25.523	
12	1.609	19.857	21.060	-6.061	18.348	19.390	-5.681	17.633	18.150	-2.933	
13	1.665	18.139	19.450	-7.226	16.808	17.920	-6.615	16.194	16.850	-4.049	
14	1.720	15.135	16.390	-8.290	13.855	15.060	-8.699	13.321	14.240	-6.899	
15	1.775	8.361	9.440	-12.911	7.190	8.580	-19.332	6.795	8.090	-19.058	
16	1.828	0.496	1.500	-202.358			-300.114	0.313	1.200	-283.264	
17	1.875	0.035	0.730	-1973.864	0.030	0.690	-2238.983	0.028	0.570	-1943.011	
18	1.924	0.299	1.100	-267.401	0.180	0.970	-440.390	0.147	0.790	-436.320	
19		3.545				3.320			+		
20	2.081	6.923									
21	2.160							 			
22	2.211	5.686									
23											
24	2.328		3.990		3.535						
25						 	 			 	

Thermal Infrared Validation Results

Channel	Center	Radiances (W/m2 um sr)								
Number	Wave-	Low Altitude			Medium Altitude			High Altitude		
	length	Predict	MASTER	%	Predict	MASTER	%	Predict	MASTER	%
				Difference			Difference			Difference
41	7.760	6.193	6.182	0.187	5.583	5.547	-1.040	5.101	4.881	4.325
42	8.168	7.163	7.155	0.117	6.967	6.899	-0.050	6.844	6.763	1.186
43	8.632	7.681	7.701	-0.258	7.613	7.563	-0.226	7.588	7.559	0.379
44	9.094	7.975	7.990	-0.181	7.930	7.900	-0.251	7.916	7.874	0.520
45	9.700	8.175	8.211	-0.441	8.102	8.039	0.027	8.023	8.002	0.262
46	10.116	8.223	8.253	-0.362	8.199	8.165	-0.017	8.189	8.151	0.462
47	10.633	8.156	8.196	-0.483	8.133	8.107	-0.574	8.130	8.092	0.470
48	11.329	7.931	7.952	-0.255	7.911	7.879	-0.108	7.915	7.880	0.447
49	12.117	7.525	7.541	-0.217	7.493	7.458	-1.422	7.490	7.440	0.670
50	12.878	7.040	7.011	0.408	6.956	6.854	-1.784	6.910	6.871	0.556